

Test Data Sheet

Surface-Mount, Resonant Electro Optic Phase Modulator with Wedged Facet and Evaluation board

RF properties	Value	Unit
Resonance frequency: f ₀ 1)	10	MHz
Return Loss	< -10	dB
Bandwidth: Δν	1	MHz
Quality factor: Q	10	
Required RF Power for 1 rad @ 633 nm 2)	24	dBm
max. RF power: RF _{max} ³⁾	1	W

Optical properties		
Aperture	1.33x1.33	mm ²
Wavefront distortion (633nm)	λ/6	nm
recommended optical intensity (421nm)	< 0.2	W/mm²
AR coating (R<1%)	400-650	nm
wedged facets	0°/1°	

 $^{^{1)}}$ at 22°C $^{2)}$ with 50Ω termination $^{3)}$ no damage with RFin < 1.5W

Measured modulation

Fig. 1: Oscilloscope trace

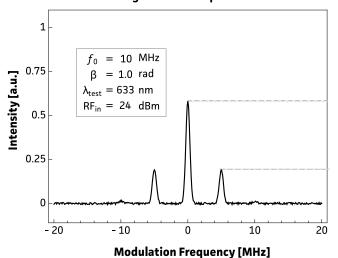


Table 1: Expected modulation

β=1 rad	Unit	λ_1	λ_2	λ ₃
λ	nm	421	532	633
Р	dBm	20.5	22.5	24
Р	mW	110	176	250
U	V _p	3.3	4.2	5
U_π	V_p	10.4	13.2	15.7
β/U	rad/V	0.3	0.24	0.2

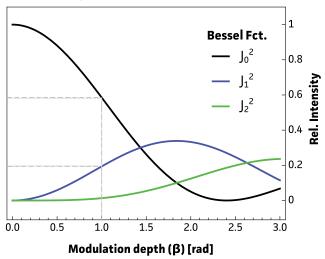
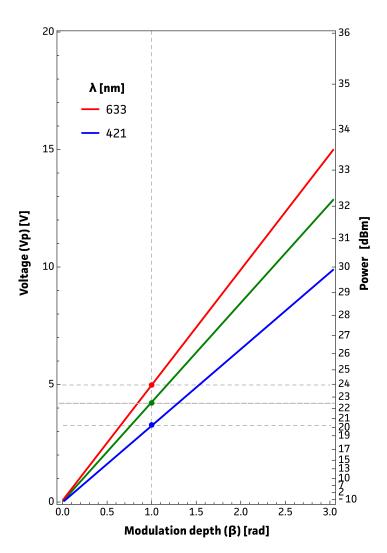
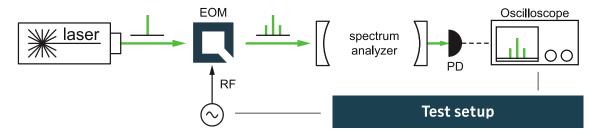

Fig.1: Recorded trace restrieved from a test setup as ilustrated below.

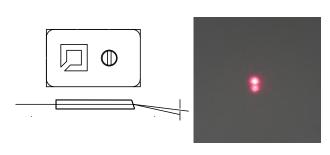
Fig.2: Squared absolute values of first-kind Bessel functions vs. modulation depth. Vertical lines reveal the ratio between the carrier J02 and the ith. sideband Ji2 at a specific β .

Fig. 3: Dependency between RF amplitude and modulation depth for different wavelengths. Points on the curve alow to retrieve either the required RF amplitude for a specific / desired β or the max. achievable modulation depth for a given / available RF power.

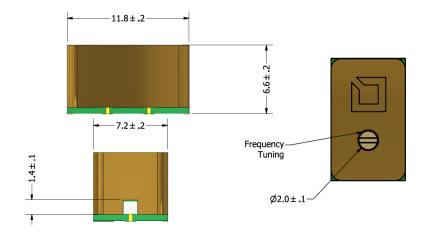
Table 1: Expected RF-Amplitude / Power values and conversion factors for the required wavelength at the reference modulation depth of 1 rad. Note: Experimentally recorded modulation depth displayed in Fig.1 might vary from the respective values (β =1 rad) provided in the table.

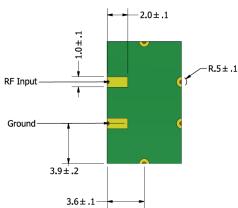
Fig.2: Carrier Sideband Ratio


Fig. 3: RF- signal amplitude vs. modulation depth

Handling instructions


- Input laser polarization must be aligned with respect to the white markers on the housing
- · Please handle device carefully. Avoid shock. Don't drop.
- After turn on the resonance frequency might drift slightly with applied RF power. Please compensate by tuning the RF drive frequency until steady-state (~min).
- Slight angle adjustment can reduce unwanted residual amplitude modulation (RAM)


Alignment

- Align the EOM in such a way, that the laser hits the unwedged surface perpendicular (AOI = 90°). The orientation of the crystal is pictured on the label on the EOM.
- The wedge deflects the beam and splits it up into different polarisations.
- Optimize the input polarisation by minimizing the optical power in the higher deflected spot.
- When it is impossible to remove the signal completely you have to block it with an iris to achieve minimum residual amplitude modulation (RAM). (Also see: Optics Letters Vol. 41, Issue 14, pp. 3331-3334 (2016), https://doi.org/10.1364/OL.41.003331)

Package drawing

Attention!!

- · use only supplied tuning tool
- · actuate tuner carefully
- · do not apply too much pressure or torque
- keep tuning tool coaxial
- tuner might not be perfectly orthogonal to box

Tested by:

Tel: +49 89 2302 9101 Fax: +49 89 2302 9102 eMail: mail@qubig.com web: www.qubig.com **Qubig GmbH**Balanstr. 57
81451 Munich
Germany