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For laser cooling considerations, we have theoretically investigated the electronic, rovibrational and hyperfine
structures of BaF molecule. The highly diagonal Franck-Condon factors and the branching ratios for all possible
transitions within the lowest-lying four electronic states have also been calculated. Meanwhile, the mixing
between metastable A02D and A2P states and further the lifetime of the D state have been estimated since the
loss procedure via D state would like fatally destroy the main quasi-cycling S�P transition for cooling and
trapping. The resultant hyperfine splittings of each rovibrational states in X2S+ state provide benchmarks
for sideband modulations of cooling and repumping lasers and remixing microwaves to address all necessary
levels. The calculated Zeeman shift and g-factors for both X and A states serve as benchmarks for selections of
the trapping laser polarizations. Our study paves the way for future laser cooling and magneto-optical trapping
of the BaF molecule.

I. INTRODUCTION

Ultracold polar molecules[1], due to the tunable long-
range dipole-dipole interactions[2], provide access to lots of
new potential regimes like novel many-body physics[3], ul-
tracold chemistry[4], precision measurement[5] and quan-
tum computation and infomation processing[6, 7]. However,
one great challenge is to produce quantum molecular sam-
ples (such as KRb[8, 9]), that means, to achieve high phase
space density in ultracold regime. Besides complicated in-
direct forming methods, direct Stark, Zeeman and optoelec-
tric slowing and cooling[10–13] could only yield molecular
samples at milliKelvin temperature, and even worse thing is
that the phase space density could not be increased. Con-
sequently, approaches of extending widely-used traditional
laser cooling technique in atoms to polar molecules are un-
der exploration[14, 15], and fortunately, the laser cooling and
magneto-optical trapping experiments have recently been re-
alized for particular species of molecules,including SrF[16,
17], YO[18, 19], and CaF[20, 21]. Now other ongoing can-
didates, like YbF[22], MgF[23], BH[24], RaF [25], TiF [26]
and BaH [27], have attracted great interests as well.

For molecules, the much more complex internal rovibra-
tional structures make finding a closed cycling transition re-
quired by laser cooling much more difficult than for atoms.
Those laser-cooled molecules above share a common feather,
highly diagonal Franck-Condon factors (FCFs), which results
in a relatively simple quasi-cycling cooling scheme, that is,
only two repmuping laser beams are required experimentally
[17] to eliminate undesired spontaneous decays to dark vi-
brational states. Besides the vibrational transitions, rotational
transitions could be closed by choosing the |N = 1i$ |N = 0i
transition where the strict parity and angular momentum se-
lection rules guarantees the pumped excited-state molecules
entirely decay back to N = 1 ground state [15]. Meanwhile,
all the hyperfine levels are addressed by sideband modulations
of the pumping and repumping lasers[16], and the problem in-
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duced by Zeeman dark state has been solved by either adding
an angled static magnetic field [16] or using the so-called
switching scheme[18, 28]. Another point is the loss channel
via the metastable D state to even parity N = 0,2 rotational
states, which must be remixed into the optical cycling with
microwave dressing, as performed in YO experiments[19].

Extending the laser cooling technique to more polar
molecules is a challenging and hot topic in physics. BaF
molecule is a good and promising candidate. It can be used to
study parity violation [29] . The involving transitions have the
wavelengths around 900 nm (see Fig.1), in the good regime of
the diode laser. It is easy to get high power laser with low cost,
making the laser cooling experiments much simpler. Here we
consider the feasibility for laser cooling and trapping of BaF
molecule. Firstly, the electronic excited A2P1/2 state has a
short lifetime of t s 56 ns (the natural linewidth G ⇡ 2p ⇥ 3
MHz)[30], which enables large photon scattering rates. Mean-
while, our calculation on the FCFs of X2S+

1/2 $ A2P1/2 tran-
sition shows that BaF indeed possesses the common highly di-
agonal feather; see details in Sec.II. Since BaF molecule has
metastable D state, for sideband modulation and microwave
remixing considerations, we employ an effective Hamiltonian
to obtain the energy values of the spin-rotation and hyperfine
levels in X2S state, and further propose a sideband modulation
and microwave addressing scheme in Sec.III. According to
the magneto-optical trapping designs for SrF and YO[17, 18],
we calculated the branching ratios from Zeeman sublevels in
A2P1/2 to those in X state, g-factors for each hyperfine lev-
els, and Zeeman splitting under external magnetic field; see
Sec.IV and V respectively. In Sec.VI, the metastable D state
has been detailly investigated due to the possible decay to
other even parity rotational states. We mainly focus on the
mixing with A2P1/2,3/2 states and the branching ratios to vi-
brational states in X ground state. Section VII gives a brief
conclusion to this work.

II. LASER COOLING SCHEME AND FRANCK-CONDON
FACTORS FOR A-X TRANSITION

The BaF molecule has similar electronic structures with SrF
[16] and YO [31], and so does the laser cooling scheme, as
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FIG. 1. (Color online) Vibrational branching is suppressed to achieve
a quasi-cycling transition for laser cooling BaF molecule. The orange
lines indicate the transitions driven by the cooling laser l00 and the
repumping lasers l10, l21. The blue and green lines indicate the
spontaneous decays from A(v0 = 0 and v0 = 1) to vibrational states in
X , respectively. qv0v represents the FCFs for the transition |A,v0i !
|X ,vi.

shown in Fig.1. The quasi-cycling transition here temporar-
ily takes no consideration on the D state which will be dis-
cussed in Sec.VI. Suppression of vibrational branching re-
quires highly diagonal FCFs for A ! X transitions. We have
performed a careful calculation of the FCFs: Firstly, we nu-
merically modeled the potential energy curves of the lower-
lying S, D and P states with the corresponding parameters
as listed in Table II by employing the RKR (Rydberg-Klein-
Rees) method[32]. We checked the RKR potential curves
with the analytical Morse potentials, they are almost the
same, especially at the region near the equilibrium positions.
Then, we use the Symplectic propagation method to solve
the Schödinger equation and meanwhile make an eigenen-
ergy correction to the trial energy E =we(v+1/2)�wece(v+
1/2)2; see Ref.[33] for more details. After getting the wave-
functions of each vibrational state, we finally calculate the
overlap integrals q̃v0v = hv0|vi and FCFs qv0v = |hv0|vi|2, where
|vi is the vibrational wavefunction.

The related values are shown in Fig.1. Since the |A,v0 =
0i! |X ,v � 3i branching is q03 = 2.7⇥10�5, we use |X ,v =
0i ! |A,v0 = 0i transition as the main pumping, the |X ,v =
1i ! |A,v0 = 0i and |X ,v = 2i ! |A,v0 = 1i transitions as
the first- and second-stage repumping to achieve s 3⇥ 104

photons scattering before molecules populate |X ,v � 3i lev-
els. The wavelengths are l00 = 860nm, l10 = 896nm and
l21 = 898nm respectively. The more accurate wavelength val-
ues are listed in Table I. Specially, the experimental value for
l00 is derived from the measured spectroscopy data [34]. The
difference between our calculation and the experimental value
is as small as 0.038 cm�1. In future experiments, a repump-

TABLE I. Accurate calculated wavelength values for the cooling
and repumping lasers in Fig.1. The values are generated with the
Te, Ae values in Table II and the calculated eigenenergy values for
corresponding vibrational states. The experimental wavelength for
l00 is derived from the measured spectroscopy data R1(0) for |X ,v =
0,N = 0,+i ! |A,v = 0,J = 1/2,�i transitions in Ref.[34] and the
Be values in Table II.

Transitions calculated [nm] from experiment [nm]
l00 859.79289 859.79569
l10 895.65807
l21 897.89917
l32 900.15402

TABLE II. Parameters of the lower-lying electronic states of the
138BaF molecule from previous experimental data [31]. The Te and
splitting constant Ae result in consistent values of Te in Ref.[35]. The
we and wece values for the P1/2,3/2 and D3/2,5/2 doublets have a
little difference; see Ref.[35] for details. All values here are in unit
of cm�1.

X2S A02D A2P
Te 0 10940.27 11962.174
Ae 206.171 632.409
we 469.4161 437.41 437.899
wece 1.83727 1.833 1.854
ae ⇥103 1.163575 1.2052 1.2563
Be 0.21652967 0.210082 0.212416

ing laser for |X ,v = 3i ! |A,v0 = 2i might be preferred to en-
hance the photon scattering, just like the 3D magneto-optical
trapping experiment of SrF [17].

Table III lists the FCFs qv0v for vibrational transitions from
A2P1/2 and A2P3/2 to X2S1/2 respectively. Since the parame-
ters we and wece for A2P1/2 and A2P3/2 states are nearly the
same [35], the corresponding values of the calculated FCFs
have no significant differences with each other. Since the an-
gular momentum selection rules forbid electronic dipole tran-
sitions in A02D ! X2S1/2, the D state decay back to X state via
its mixing with the P states, and thus we do not list the FCFs
here. The branching ratios for the spontaneous emissions from
A0 to X will be discussed in Sec.VI.

III. HYPERFINE STRUCTURES

Now let us consider the rotational branchings. The X2S1/2
state is a Hund’s case (b) state and rotational quantum num-
ber N is a good quantum number, but for Hund’s case (a) state
A2P1/2, the good quantum number is J = N +W coupled by
rotational and electronic angular momentum. |A2P1/2,J0 =
1/2i state has a double orbital degeneracy [36], that is, L-
doubling structures corresponding to odd- and even-parity
electronic wavefunctions respectively. Following the parity
and angular momentum selection rules for dipole transition,
the parities of the initial and final states should be opposite and
DJ = 0,±1. Consequently, driving |X ,N = 1,�i ! |A,J0 =
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TABLE III. The calculated FCFs (qv0v) for vibrational transitions in |A2P1/2,v
0i ! |X2S1/2,vi and |A2P3/2,v

0i ! |X2S1/2,vi using the RKR
potentials.

A2P1/2,v
0 ! X ,v v0 = 0 v0 = 1 v0 = 2 v0 = 3 v0 = 4

v = 0 0.9508 0.0483 9.1⇥10�4 1.9⇥10�6 4.5⇥10�7

v = 1 0.0476 0.8539 0.0956 0.0030 1.3⇥10�5

v = 2 1.5⇥10�3 0.0925 0.7581 0.1412 0.0065
v = 3 2.7⇥10�5 5.1⇥10�3 0.1347 0.6643 0.1841
v = 4 4.6⇥10�7 1.3⇥10�4 0.0104 0.1733 0.5738

A2P3/2,v
0 ! X ,v v0 = 0 v0 = 1 v0 = 2 v0 = 3 v0 = 4

v = 0 0.9508 0.0482 9.7⇥10�4 3.8⇥10�6 2.1⇥10�7

v = 1 0.0476 0.8539 0.0956 0.0032 2.2⇥10�5

v = 2 1.6⇥10�3 0.0928 0.7582 0.1404 0.0068
v = 3 2.9⇥10�5 4.8⇥10�3 0.1352 0.6648 0.1828
v = 4 3.7⇥10�7 1.2⇥10�4 0.0099 0.1743 0.5746

1/2,+i transitions results in only decays back to N = 1 are
allowed as shown in Fig.2.

However, the hyperfine structures of both the ground X
and excited A states should be taken into account for optical
pumping, otherwise the dark states exist. For Hund’s case (a)
state A2P1/2, the L-splitting for J state with different parity is
dEL =�(p+2q)(J+1/2), where p+2q =�0.25755 cm�1

for 138BaF [34]; while the hyperfine splitting between F 0 = 0
and F 0 = 1 for |J0 = 1/2,+i is unresolved yet. For ground
state X2S+

1/2, both the spin-rotation and hyperfine interactions
split the |X ,N = 1,�i state into four components as shown in
Fig.2. All four hyperfine levels should be pumped simultane-
ously to prevent molecules accumulate into one state. To im-
plement the sideband modulation, we have to calculate the rel-
atively precise energy splittings of the hyperfine states in each

FIG. 2. (Color online) Rotational branching is elimilated by driv-
ing |X2S1/2,N = 1,�i! |A2P1/2,J

0 = 1/2,+i transition. Unfortu-
nately, |A2P1/2,J

0 = 1/2,+i can also decay to |A02D3/2,J
0 = 3/2,�i

state, and then back to |X ,N = 0,2,+i rotational states, which will
break the optical cycling. In addition, |X ,N = 1,�i state obeys
Hund’s case (b) and suffers from spin-rotaion and hyperfine split-
ting, thus the optical cycling should adress all possible levels. Here
+(-) indicates even(odd) parity.

TABLE IV. The Dunham coefficients Y (from Ref.[37]), the spin-
rotational constants g (from Ref.[38]) and hyperfine constants b,c
(from Ref.[39]) used in hyperfine structure calculation for 138BaF
molecule. All values here in unit of MHz.

Parameters Values Parameters Values
Y01 6491.3946 g00 80.9840
Y02 �5.5248⇥10�3 g10 �58.4⇥10�3

Y11 �34.8784 g01 0.112⇥10�3

Y12 �9.7632⇥10�6 b0 63.509
Y21 13.0288⇥10�3 c0 8.224

rotational state of X2S1/2. The effective Hamiltonian con-
tains the molecular rotational term HR, spin-rotational cou-
pling HSR and hyperfine interaction Hhfs, and is given by

Heff = HR +HSR +Hhfs,

HR = BvN̂2 �DvN̂4,

HSR = gvNT 1(Ŝ) ·T 1(N̂),

Hhfs = bF T 1(Î) ·T 1(Ŝ)+ cvT 1
q=0(Î)T

1
q=0(Ŝ)

+CvNT 1(Î) ·T 1(N̂),

(1)

in which the rotational constant Bv = Y01 +Y11(v + 1/2) +
Y21(v + 1/2)2, centrifugal distortion constant Dv = �Y02 �
Y12(v + 1/2), spin-rotational constant gvN = g00 + g10(v +
1/2) + g01N(N + 1), Fermi contact constant bF = bv + cv/3
with hyperfine constant bv and dipole-dipole constant cv, and
the nuclear spin-rotational constant CvN is generally small
enough, at the magnitude of kilohertz, to be neglected in our
calculations, but listed here for completeness. The required
Dunham coefficients and g,bv,cv parameters are listed in Ta-
ble IV.

Since the good quantum numbers for Hund’s case (b) state
X2S1/2 are N,J,F , we expand the Hamiltonian (1) under basis
|fi = |N,S,J, I,F,mFi. The corresponding matrix elements
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for each term of (1) are,

hf 0|BvN̂2 �DvN̂4|fi

= dN0NdJ0JdF 0F dm0
F mF

�
BvN(N +1)�Dv[N(N +1)]2

�
,(2)

hf 0|gvNT 1(Ŝ) ·T 1(N̂)|fi= dN0NdJ0JdF 0F dm0
F mF

gvN

⇥ (�1)N+J+S{S}1/2{N}1/2
⇢

S N J
N S 1

�
, (3)

hf 0|bF T 1(Î) ·T 1(Ŝ)|fi= dN0NdF 0F dm0
F mF

bF

⇥ (�1)J0+F+I+J+N+1+S[J0]1/2[J]1/2{S}1/2{I}1/2

⇥
⇢

I J0 F
J I 1

�⇢
J S N
S J0 1

�
, (4)

hf 0|cvT 1
q=0(Î)T

1
q=0(Ŝ)|fi= dN0NdF 0F dm0

F mF
(�

p
30cv/3)

⇥ (�1)J0+F+I+N [J0]1/2[J]1/2{S}1/2{I}1/2(2N +1)

⇥
✓

N 2 N
0 0 0

◆⇢
I J0 F
J I 1

�8
<

:

J J0 1
N N 2
S S 1

9
=

; , (5)

hf 0|CvNT 1(Î) ·T 1(N̂)|fi= dN0NdF 0F dm0
F mF

CvN

⇥ (�1)2J+F 0+I+N0+1+S[J0]1/2[J]1/2{N}1/2{I}1/2

⇥
⇢

I J F 0

J0 I 1

�⇢
N J S
J0 N0 1

�
, (6)

where [x]1/2 =
p

2x+1 and {x}1/2 =
p

x(x+1)(2x+1).
By diagonalizing the Heff matrix, the energy splittings be-

tween different rotational hyperfine levels are obtained and
illustrated in Fig.3. The data therein is for v = 0 case, while
for higher v = 1,2 states, the energy splittings differ rather
small (⇠ kHz level) with those of v = 0 because the g10 is at
the magnitude of several tens of kHz. Based on the calculated
data, we firstly discuss the sideband modulation to the pump-
ing (l00) and repumping (l10,l21) lasers for |X ,N = 1,Fi $
|A,J0 = 1/2,F 0 = 0,1i transitions. Figure 4 shows the theoret-
ically calculated fluorescence spectra and the proposed side-
band frequency distributions generated by an electro-optical
modulator (EOM). By simply choosing the laser detuning d =
�20 MHz and the modulating frequency fMod = 40 MHz, the
four hyperfine levels of N = 1 are all addressed with detunings
within 3G respectively. Here the laser detuning d is defined
by the frequency difference to the |X ,N = 1i $ |A,J0 = 1/2i
transition, while in SrF experiments[16, 17] the laser detuning
is experimentally determined to be zero when maximal laser-
induced fluorescence signal is obtained, and this zero value in
turn serves as a benchmark to define the laser detunings.

On the other hand, different with SrF molecule, an addi-
tional feature of BaF is the leakage decay to |X ,N = 0,2,+i
states via the metastable D state (see Fig.2), which leads to the
unexpected rotational branchings. Fortunately, a microwave

FIG. 3. (Color online) The spin-rotational splittings and hyper-
fine levels for N = 0,1,2 rotational states in X2S(v = 0). The
energy values are shown corresponding to the reference energy of
each rotational state. The red, orange and green lines indicate the
DJ =+1,DF =+1 transitions, and the calculated values are listed in
Table V, respectively.

TABLE V. Comparison of the calculated and experimentally ob-
served transition frequencies for DJ = J0 � J = +1,DF = F 0 �F =
+1 hyperfine transitions in rotational states of X2S1/2 state of BaF.
The frequency difference D f = fcalc. � fobs. is defined. The experi-
mental data is taken from Ref.[39].

N0 �N J0 � J F 0 �F fcalc.(MHz) fobs.(MHz) D f (kHz)
1�0 3/2�1/2 1�0 13020.2976 13020.286 +11.6

2�1 12988.0986 12988.110 -11.4

2�1 3/2�1/2 1�0 25856.5501 25865.572a

2�1 25854.4139 25854.434 -20.0
5/2�3/2 2�1 25936.9012 25936.873 +28.2

3�2 25936.0181 25936.006 +12.1

a This value in Ref.[39] has significant difference with our calculated value.

remixing method could perfectly solve this problem [19]. In
Fig.3, the energy splittings for every neighboring two rota-
tional states and the energy values for all hyperfine states
are shown, and one can easily obtain the energy for every
arbitrary possible transition. Here we plan to use the DJ =
+1,DF = +1 transitions to implement the microwave remix-
ing, and the corresponding frequency values are listed in Table
V. We have compared our calculated values with the experi-
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FIG. 4. (Color online) The proposed sideband modulation scheme
to the (re)pumping lasers to simutaneously cover all four hyperfine
levels of |X ,N = 1i. The calculated spectra (black line) are plotted
with the branching ratio from the |A,J = 1/2,+i to each hyperfine
levels(see Fig.2) as the strength of each peak, the calculated energy
value in Fig.3 as the center frequency, and G as the linewidth. The
vertical red line indicate the sidebands of an EOM. By simply mak-
ing the laser detuning d = �20MHz and the modulated frequency
fMod = 40 MHz, the resultant sideband frequency values are matched
within ⇠ 3G detuned to the respective peaks.

mentally observed spectra data in Ref.[39] and found that the
differences are within several kHz. Such small difference also
demonstrates the reliability of our calculations from another
side. Microwave radiation tuned to f0 = 12948 ± 15 MHz
can drive |N = 0,F = 0i $ |N = 1,J = 1/2,F = 0i and
|N = 0,F = 1i $ |N = 1,J = 3/2,F = 1i transitions to mix
the N = 0 hyperfine states with those in N = 1, while the N = 2
is remixed to N = 1 just by doubling the frequency f0 to drive
DJ =+1,DF =+1 transitions. The detunings for the six tran-
sitions are less than 10 MHz.

Till now, we have discussed the quasi-closed optical cycling
for BaF molecule in detail over all directions: the short life-
time of A2P1/2 state, highly diagonal FCFs, parity selection
rules and microwave remixing assisted rotational branching
elimination, sideband modulation to adress all four hyperfine
levels of |X ,N = 1i. In following sections, we mainly focus
on the molecular properties correlated with magneto-optical
trapping experiment, including the branching ratios, energy
splitting under external field and the lifetime estimation of the
delta state.

IV. BRANCHING RATIOS FOR A-X TRANSITION

The branching ratios reflect the distributions of the transi-
tion strengths for various all possible hyperfine decay paths. It
is therefore necessary to calculate the branching ratios to de-
termine the required laser intensities for certain transitions and
for reproducing the molecular population distribution with ex-
perimentally observed line strengths to these hyperfine levels.
In this section, we summarize the calculation details of the hy-
perfine branching ratios in A�X transition for BaF following
the derivations in Ref.[40].

TABLE VI. The J-mixing phenomena in N = 1 and N = 2 rotational
states of ground X state. The corresponding coefficients are a1 =
0.9593,b1 = 0.2824 and a2 = 0.9858,b2 = 0.1679.

N mixed label superposition of pure J states
1 |J = 1/2,F = 0i |J = 1/2(F = 0)i

|J = 1/2,F = 1i a1|J = 1/2(F = 1)i+b1|J = 3/2(F = 1)i
|J = 3/2,F = 1i �b1|J = 1/2(F = 1)i+a1|J = 3/2(F = 1)i
|J = 3/2,F = 2i |J = 3/2(F = 2)i

2 |J = 3/2,F = 1i |J = 3/2(F = 1)i
|J = 3/2,F = 2i a2|J = 3/2(F = 2)i+b2|J = 5/2(F = 2)i
|J = 5/2,F = 2i �b2|J = 3/2(F = 2)i+a2|J = 5/2(F = 2)i
|J = 5/2,F = 3i |J = 5/2(F = 3)i

Before deriving the matrix elements for electric dipole tran-
sition in A�X , we firstly investigate the J-mixing of the hy-
perfine levels in the ground X state, where spin-rotation in-
teraction produces J-splittings and then hyperfine interaction
results in different F-branchings. The mixing coefficients are
obtained by diagonalizing the Heff matrix; see Eq.(1). For
N = 0, J = 1/2, no mixing exists; while for N = 1 or N = 2
manifold, the hyperfine levels with same F value but in differ-
ent J components suffer from the so-called J-mixing. Here we
still label the nominal mixed hyperfine level as |N,J,Fi, but
the pure J state as |N,J(F)i. The mixing situations for N = 1
and N = 2 are shown in Table VI. Knowledge of J-mixing is
required in following branching ratios calculations.

Now let us discuss the calculation of the branching ra-
tios for all possible hyperfine decays from |A,J = 1/2,+i
to |X ,N = 1,�i. We firstly convert the nominal basis
sets |X ;N,J,Fi and |A;J,+i into Hund’s case (a) basis
|L,S,S,W,J, I,F,mFi. The nominal J-mixed |N,J,Fi states
in X can be written as superpositions of pure J states
|L;N,S,J(F)i (abbreviated as |N,J(F)i in Table VI). The
pure J state is Hund’s case (b) state and can further be con-
verted to case (a) basis as

|L;N,S,J(F)i= Â
W

Â
S
(�1)J+Wp2N +1

⇥
✓

S N J
S L �W

◆
|L,S,S,W,J,Fi, (7)

while for A state,

||L|,J,±i= 1p
2
(|L;S,S;J,Wi

± (�1)J�S |�L;S,�S;J,�Wi) . (8)

Then we calculate the matrix element for electric dipole
transition between two Zeeman sublevels labeling as |yei and
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|ygi under Hund’s case (a) basis, that is,

hdi= hye|T 1
p (d̂)|ygi

= hae;Je, Ie,Fe,mF,e|T 1
p (d̂)|ag;Jg, Ig,Fg,mF,gi

= (�1)Fe�mF,e+Fg+Je+Ig+1[Fe]
1/2[Fg]

1/2

⇥
✓

Fe 1 Fg
�mF,e p mF,g

◆⇢
Jg Fg Ig
Fe Je 1

�

⇥hae;Je||T 1(d̂)||ag;Jgi, (9)

where |ai = |L;S,S;Wi. Applying the Wigner-Eckart theo-
rem to the last term in Eq.(9), we obtain

hLe;Se,Se;We,Je||T 1(d̂)||Lg;Sg,Sg;Wg,Jgi

=
1

Â
q=�1

(�1)Je�We [Je]
1/2[Jg]

1/2
✓

Je 1 Jg
�We q Wg

◆

⇥hLe;Se,Se||T 1
q (d̂)||Lg;Sg,Sgi, (10)

where Se = Sg should be satisfied since the electrical dipole
operator T 1

q (d̂) can neither change the electron spin nor the
spin projection, and the matrix element hLe||T 1

q ||Lgi is com-
mon for all DL =±1 transitions.

Putting Eqs.(7)-(10) and the formula in Table VI all to-
gether, the branching ratios for decays from hyperfine Zeeman
sublevels in |A,J = 1/2,+i to those in |X ,N = 1,�i state are
obtained and summarized in Table VII. The calculated branch-
ing ratios provide instructive directions to future laser cooling
and trapping experiments on BaF molecule.

V. ZEEMAN SPLITTINGS UNDER MAGNETIC FIELD

To achieve the remixing of dark Zeeman sublevels [17]
and further trapping of molecules [18, 28], an external mag-

TABLE VII. Calculated hyperfine branching ratios for decays from
|A,J0 = 1/2,+i state to |X ,N = 1,�i state. The line strengths in
Fig.4 are estimated with the values here.

F 0 = 0 F 0 = 1
J F mF m0

F = 0 m0
F =�1 m0

F = 0 m0
F = 1

1/2 0 0 0 2/9 2/9 2/9

�1 0.2985 0.1641 0.1641 0
1/2 1 0 0.2985 0.1641 0 0.1641

1 0.2985 0 0.1641 0.1641

-1 0.0348 0.0859 0.0859 0
3/2 1 0 0.0348 0.0859 0 0.0859

1 0.0348 0 0.0859 0.0859

-2 0 1/6 0 0
-1 0 1/12 1/12 0

3/2 2 0 0 1/36 1/9 1/36
1 0 0 1/12 1/12
2 0 0 0 1/6

TABLE VIII. Calculated hyperfine branching ratios for decays from
|A,J0 = 1/2,�i state to |X ,N = 0,2,+i state.

F 0 = 0 F 0 = 1
N J F mF m0

F = 0 m0
F =�1 m0

F = 0 m0
F = 1

0 1/2 0 0 0 2/9 2/9 2/9

�1 2/9 2/9 2/9 0
1 0 2/9 2/9 0 2/9

1 2/9 0 2/9 2/9
-1 1/9 1/36 1/36 0

2 3/2 1 0 1/9 1/36 0 1/36
1 1/9 0 1/36 1/36

-2 0 0.1620 0 0
-1 0 0.0810 0.0810 0

3/2 2 0 0 0.0270 0.1080 0.0270
1 0 0 0.0810 0.0810
2 0 0 0 0.1620

-2 0 0.0047 0 0
-1 0 0.0023 0.0023 0

5/2 2 0 0 0.0008 0.0031 0.0008
1 0 0 0.0023 0.0023
2 0 0 0 0.0047

netic field is usually applied to the molecules. In a magneto-
optical trap, the magnetic field is employed to create a posi-
tion dependent restoring force to cool and confine the atoms
or molecules. The degeneracy of the total 2F + 1 Zeeman
sublevels within a hyperfine state of quantum number F is
destroyed by the external magnetic field. In this section, we
focus on the Zeeman splittings of the two states involved with
the cooling transition |X ,N = 1,�i$ |A,J = 1/2,+i. Under
the external field Bz, the Zeeman Hamiltonian

Hz =
⇥
gSµBT 1

p=0(Ŝ)+gLµBT 1
p=0(L̂)�gI µNT 1

p=0(Î)
⇤

Bz,
(11)

together with the spin-rotation and hyperfine interaction terms
in Eq.(1) contribute to the splittings of Zeeman sublevels. For
the ground state |X ,N = 1,�i, the three terms in Hamiltonian
Hz are expanded under basis |fi = |N,S,J, I,F,mFi respec-
tively as

hf |gSµBT 1
p=0(Ŝ)|f 0i= gSµB(�1)F�mF

✓
F 1 F 0

�mF 0 m0
F

◆

⇥ (�1)F 0+J+1+I [F 0]1/2[F ]1/2(�1)J0+N+1+S[J0]1/2[J]1/2

⇥{S}1/2
⇢

F J I
J0 F 0 1

�⇢
J S N
S J0 1

�
, (12)
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hf |gLµBT 1
p=0(L̂)|f 0i= gLµB(�1)F�mF

✓
F 1 F 0

�mF 0 m0
F

◆

⇥ (�1)F 0+J+1+I [F 0]1/2[F ]1/2(�1)J0+N+1+S[J0]1/2[J]1/2

⇥ (�1)N�L[N]1/2[N0]1/2
⇢

F J I
J0 F 0 1

�⇢
J N S
N0 J0 1

�

⇥
✓

N 1 N0

�L 0 L

◆
L, (13)

and

hf |gI µBT 1
p=0(Î)|f 0i= gI µNdJ,J0(�1)F�mF

✓
F 1 F 0

�mF 0 m0
F

◆

⇥ (�1)F 0+J+1+I [F 0]1/2[F ]1/2{I}1/2
⇢

F I J
I F 0 1

�
. (14)

Since L = 0 for X2S state, the second term (13) vanishes;
and the third term (14) is smaller enough to be neglected due
to µB/µN ⇡ 1836. Consequently, the effective Hamiltonian
matrix is constructed by the elements from Eqs.(3)-(5) and
(12). By diagonalizing the matrix at different magnetic field
strengths, we obtain the Zeeman energy splittings as shown
in Fig.5. The splitting behaviors at weak and strong magnetic
field strengths show different features. In strong field region,
the sublevels with different F,mF values totally split.

However, typical magneto-optical trap for molecules em-
ploys field of about only several Gauss strength. When mag-
netic field is weak, the Zeeman Hamiltonian is just a pertur-
bation to the hyperfine interaction term, thus the energy shifts
for sublevles in |J = 3/2,F = 1,2i and |J = 1/2,F = 0i show
nearly linear variations, as illustrated in Fig.5(c). But spe-
cially, for |J = 1/2,F = 1i manifold, the shifts do not linearly
variate along with the field strengths, that is, the linear region
is rather small (less than 5 Gauss); see Fig.5(b). The reason is
that the matrix element of the hyperfine term for |J = 1/2,F =
1i is relatively smaller than those for |J = 3/2,F = 1,2i, and
thus much more easily be perturbed by the external magnetic
field. Another point is that the variation behavior can not be
correctly described by the typical g-factors, instead mixed g-
factors are used to describe the linear gradients of the Zeeman
shifts. By applying a rather small magnetic field strength, say
0.01 Gauss, to the Zeeman Hamiltonian (11), we obtain the
energy differences with the degenerate hyperfine levels at zero
strength for all Zeeman sublevels, and the mixed g-factors are
yielded by a transformation.

Table IX gives the typical g-factors and the mixed g-factors
for the four hyperfine states in |X ,N = 1,�i. For states
|J = 1/2,F = 0i and |J = 3/2,F = 2i, no J-mixing exists,
and both the g-factors keep identical with those typical gF for
pure J states. However, the mixed g-factors for two |F = 1i
states change significantly due to the J-mixing effect which
is much stronger than the Zeeman effect from external field.
Different with SrF [17] and MgF [23] where mixed g-factor
for |J = 1/2,F = 1i is negative and an additional opposite
polarized trapping laser should be combined, the g-factor for

FIG. 5. (Color online) Zeeman splittings for sublevels in the four
hyperfine states of |X ,N = 1,�i manifold. (a) The whole picture,
sublevels labeled by same mF quantum number are plotted in same
color. (b) and (c) are zoom-in plots of |J = 1/2,F = 1i and |J =
3/2,F = 1,2i manifolds respectively at small magnetic field region.

TABLE IX. The typical g-factors (gF ) and the mixed ones for the
four hyperfine levels in |X ,N = 1,�i state.

state label typical g-factor gF mixed g-factor
|J = 1/2,F = 0i 0.00 0.000
|J = 1/2,F = 1i -0.33 0.015
|J = 3/2,F = 1i 0.83 0.485
|J = 3/2,F = 2i 0.50 0.500

BaF here is positive, that is, all hyperfine manifolds have g> 0
and thus laser addressing different manifolds could take same
polarizations for optimal trapping.

However, Tarbutt [41] has pointed out that even for Type-II
magneto-optical trap the restoring force and the laser polariza-
tions are still mainly determined by the g-factor of the excited
state. Under magnetic field strength Bz, the Zeeman interac-
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tion energy for Hund’s case (a) state |L;J,W;F,mFi is given
by

DEz =
gLL+gsS
J(J+1)

WµBBzmF , (15)

where gL ⇡ 1, gS = 2.0023. For |A2P,J = 1/2i state, DEz =
7.7⇥10�4µBmF Bz. The g-factor is close to zero.

Fortunately, the excited P1/2 state in fact is not totally a
pure state, and it is usually spin-orbital mixed with upper S1/2
state, which introduces additional parity-dependent terms to
the Zeeman Hamiltonian [42]. According to the derivations in
Ref.[42], for |A,J = 1/2,±,F = 1i state, the parity-dependent
Zeeman shift is

DEpz± =±gpµBmF Bz, (16)

where �/+ indicate the odd/even parity, and gp is derived
from L-doubling coefficients and the rotational constant [41].
For BaF molecule in |A,J = 1/2,+,F = 1i, gp = 1

3 (p +
2q)/(2Be) =�0.202, which is much larger than gp =�0.088
for SrF [43], gp = �0.065 for YO [18] and gp = �0.021 for
CaF [44]. Larger g-factor of the upper state should result in a
larger magneto-optical trapping force, and one can also resort
to the rapid switching of the polarization of the trapping laser
to achieve better trapping effect.

VI. THE DELTA STATE

In Sec.III, we have discussed the undesired leakage decay
from |A,J = 1/2,+i to |X ,N = 0,2,+i via the A02D3/2 state,
which will break the quasi-closed optical cycling. One con-
cerned problem for our future laser cooling experiment is the
decay rate from the |A0,J = 3/2,�i to the |X ,N = 0,2,+i
state, that is, the lifetime of the metastable D state. In fact, the
D state decay back to X state due to its mixing with upper A2P
state and the selection rules forbid direct electric dipole tran-
sition from D to S where DL = 2. In this section, we focus on
the identification of the mixing between the A02D3/2 and A2P
states, and then make an estimation of the lifetime of the A02D
state based on the mixing coefficients just like that performed
in YO molecule [45].

The mixing of D3/2 and P1/2,3/2 states originates from the
spin-orbit and rotational electronic Coriolis interactions, de-
noted as Hso and Hcor respectively. The spin-orbit opera-
tor Hso = Âi Âq=±1 T 1

q (âil̂i)T 1
�q(ŝi) describes the total effect

from the interaction of each electron’s spin (ŝi) with its own
motion (described by the angular momentum l̂i), while the
Coriolis operator Hcor = � h̄

4pcµr2 Âq=±1 T 1
q (Ĵ)T

1
�q(L̂) reflects

the effect from the interaction between electron’s motion and
molecular rotation. Both the operators can couple two states
with DL = ±1. The detailed descriptions for the two opera-
tors are discussed in Refs.[42, 46]. Following the procedure
in Ref.[46], the off-diagonal nonzero matrix elements for Hso

TABLE X. The vibrational wavefunction overlaps hv|v0i for
A02D3/2 �A2P1/2 and A02D3/2 �A2P3/2.

A02D3/2(v)
0 1 2

0 0.99228 -0.12190 0.02235
A2P3/2(v

0) 1 0.12401 0.97733 -0.16722
2 -0.00135 0.17306 0.96321

0 0.97511 0.21781 0.041001
A2P1/2(v

0) 1 -0.21962 0.92411 0.30419
2 0.03027 -0.30913 0.87070

TABLE XI. The Bvv0 values for A02D3/2�A2P1/2, A02D3/2�A2P3/2
and A2P1/2 �A2P3/2.

A02D3/2(v)
0 1 2

0 0.20904 -0.03477 0.00710
A2P3/2(v

0) 1 0.01689 0.20466 -0.04771
2 -0.00102 0.02336 0.20048

0 0.20904 -0.03473 0.00730
A2P1/2(v

0) 1 0.01689 0.20467 -0.04761
2 -0.00125 0.02334 0.20049

A02P3/2(v)
0 1 2

0 0.21183 -0.00931 0.00109
A2P1/2(v

0) 1 -0.00933 0.21057 -0.01306
2 0.00066 -0.01313 0.20931

and Hcor operators are given as

hv,A02D3/2|Hcor|A2P1/2,v0i = �
p

3Bvv0b2,

hv,A02D3/2|Hcor|A2P3/2,v0i = Bvv0b2,

hv,A02D3/2|Hso|A2P3/2,v0i = hv|v0ia2,

hv,A02P1/2|Hcor|A2P3/2,v0i = �
p

3Bvv0 ,

(17)

where a2 = AP
e (see Table II), b2 = 2 [46], hv|v0i is the vi-

brational wavefunction overlap, and Bvv0 =
h̄

4pcµ hv|(1/r2)|v0i
is a vibrational averaging (over internuclear distance r) value.
The relevant hv|v0i and Bvv0 values for |A02D3/2,v = 0,1,2i,
|A2P1/2,v = 0,1,2i and |A2P3/2,v = 0,1,2i states are listed
in Table X and Table XI respectively. The vibrational wave-
functions are evaluated with the method in Sec.II.

We construct the Hamiltonian matrix by taking the eigenen-
ergy values of the vibrational states (adding the energy gaps
Te(P3/2)�Te(D3/2) and Te(P1/2)�Te(D3/2) for correspond-
ing states in A2P3/2 and A2P1/2) as the diagonal elements.
However, the eigenenergy arrays should be eigenvalues of the
mixing Hamiltonian matrix, thus we should vary the diago-
nal elements one by one to make the eigenvalues of the mix-
ing matrix closer to the eigenenergy values of those states in-
volved step by step. When the eigenvalues are approaching
closely to each respective eigenenergy for the nine vibrational
states, the eigenvector can approximately describe the mixing
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of the pure Born-Oppenheimer P and D states. For v = 0 state
in mixed A02D3/2, the wavefunction is given by

|gD3/2,v = 0i ⇡ 0.88732|D3/2,v = 0i�0.45945|P3/2,v = 0i

� 0.03539|P3/2,v = 1i+0.00072|P3/2,v = 2i

+ 0.00052|P1/2,v = 0i+ .... (18)

The mixing coefficients here along with the vibrational
wavefunction overlaps between A2P and X2S can give an ap-
proximate estimation on the vibrational branching ratios from
A02D3/2 to X2S states. For |A0,v = 0i state, about 91.2% de-
cay back to |X ,v = 0i, 8.3% to |X ,v = 1i and the remaining
0.4% to |X ,v � 2i states. In actual cooling procedure, rapid
decay rates from |A02D3/2,J0 = 3/2,�i to |X ,N = 0,2,+i are
required, so the lifetime of the D state should not be too long.
Considering the 21% mixing with A2P3/2 and the lifetime of
A2P3/2 state is 46 ns [30], the A02D3/2 has a lifetime of ⇠
220 ns, which guarantees that after the pumped molecules
in excited |A2P1/2,J = 1/2,+i relaxing to the |A02D3/2,J =
3/2,�i state, they can rapidly decay back to |X ,N = 0,2,+i
states, and then be remixed back to |X ,N = 1,�i in optical
cycling by the microwave scheme described in Sec.III.

VII. CONCLUSION

To conclude, we have investigated the molecular structures
and branching ratios for BaF molecule, and further demon-

strated the feasibility of laser cooling and trapping. BaF
molecule has both the identical properties with laser-cooled
SrF and YO molecule and its own unique character. The
short lifetime for the A2P1/2 state, the highly diagonal FCFs
and the microwave remixing of different rotational manifolds
in X states implement the qusi-closed optical cycling proce-
dure. Based on our calculations on the hyperfine splittings,
we have proposed a sideband modulation scheme to simul-
taneously pump the four hyperfine levels of |X ,N = 1i and
an optimal choice of the microwave frequencies. The results
of the branching ratios, Zeeman splittings and g-factors will
serve as a reference for adjustment of laser powers and polar-
izations. Finally, we have checked again that the leakage pro-
cess via D state can be eliminated with microwave remixing
since the lifetime of the D state is estimated as about 220 ns.
The results and proposed schemes show the feasibility of fu-
ture laser cooling and trapping experiments on BaF molecule.
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