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1 Introduction

This document is a stand-alone version of the appendix on potasssium properties of my thesis [1]. It is
meant to provide an overview of the properties of atomic potassium useful for experiments on ultracold
gases. A thorough review of the properties of lithium has been given in the thesis of Michael Gehm [2, 3].
For the other alkali atoms extended reviews have been given for Na, Rb and Cs by Daniel Steck [4].

2 General Properties

Potassium is an alkali-metal denoted by the chemical symbol K and atomic number Z = 19. It has been
discovered in 1807 by deriving it from potassium hydroxide KOH. Being an alkali atom it has only one
electron in the outermost shell and the charge of the nucleus is being shielded by the core electrons. This
makes the element very chemically reactive due to the relatively low ionization energy of the outermost
electron. The basic physical properties of potassium are listed in Table 2. Potassium has a vapor pressure
given in mbar by [5]:
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3 OPTICAL PROPERTIES

Mass number A Neutrons N Abundance (%) [6] m (u) [8] τ [9] I [9]
39 20 93.2581(44) 38.96370668(20) stable 3/2
40 21 0.0117(1) 39.96399848(21) 1.28 × 109 y 4
41 22 6.7302(44) 40.96182576(21) stable 3/2

Table 1: Naturally occurring isotopes of potassium. The atomic number of potassium is Z = 19. The
given properties are the atomic number A, the number of neutrons in the nucleus N , the abundance, the
atomic mass m, the lifetime τ and the nuclear spin I.

Melting point 63.65◦C (336.8 K) [10]
Boiling point 774.0◦C (1047.15 K) [10]

Density at 293 K 0.862 g/cm
3

[10]

Ionization energy 418.8 kJ mol−1 [10]
4.34066345 eV [11]

Vapor pressure at 293 K 1.3 × 10−8 mbar [5]
Electronic structure 1s22s2p63s2p64s1

Table 2: General properties of potassium

(solid) log p = 7.9667 −
4646

T
298 K < T < Tm. (1)

(liquid) log p = 7.4077 −
4453

T
Tm < T < 600 K

Figure 1 depicts the vapor pressure over the valid range of Eq. 1.

Potassium has a chemical weight of 39.0983(1) [6] and appears naturally in three isotopes, 39K, 40K
and 41K which are listed in Table 1. The fermionic isotope 40K has two radioactive decay channels. In
89% of the cases it decays through a β− decay of 1.311MeV resulting in the stable 40Ar. In the remaining
11% it decays through electron capture (K-capture) to 40Ca [7]. The former decay channel is commonly
used for dating of rocks.

3 Optical properties

The strongest spectral lines of the ground state potassium atom are the D1 (2S → 2P1/2) and D2
(2S → 2P3/2) lines. The most recent high precision measurements of the optical transition frequencies
of potassium have been published by Falke et al. [12]. Tables 3 to 8 list the properties of the D1 and D2
lines for the various isotopes.

The natural lifetime τ of an excited state is related to the linewidth of the associated transition by

Γ =
1

τ
(2)

where Γ is the natural linewidth. A temperature can be related to this linewidth, which is referred to as
the Doppler temperature

kBTD =
~Γ

2

where kB is the Boltzmann constant. The wavenumber k and frequency ν of a transition are related to
the wavelength λ by

k =
2π

λ
, ν =

c

λ
(3)

When an atom emits or absorbs a photon the momentum of the photon is transferred to the atom by the
simple relation

mvrec = ~k (4)

2



3 OPTICAL PROPERTIES
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Figure 1: Vapor pressure of potassium taken from [5]. The green dashed line indicates the melting point
of T = 336.8◦C.
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4 FINE STRUCTURE, HYPERFINE STRUCTURE AND THE ZEEMAN EFFECT

Property symbol value reference

Frequency ν 389.286058716(62) THz [12]
Wavelength λ 770.108385049(123) nm
Wavenumber k/2π 12985.1851928(21) cm−1

Lifetime τ 26.37(5) ns [13]
Natural linewidth Γ/2π 6.03(1) MHz

Recoil velocity vrec 1.329825973(7) cm/s
Recoil Temperature Trec 0.41436702 µK

Doppler Temperature TD 145 µK

Table 3: Optical properties of the 39K D1-line.

Property symbol value reference

Frequency ν 391.01617003(12) THz [12]
Wavelength λ 766.700921822(24) nm
Wavenumber k/2π 13042.8954964(4) cm−1

Lifetime τ 26.37(5) ns [13]
Natural linewidth Γ/2π 6.035(11) MHz

Recoil velocity vrec 1.335736144(7) cm/s
Recoil Temperature Trec 0.41805837 µK

Doppler Temperature TD 145 µK
Saturation intensity Is 1.75 mW/cm2

Table 4: Optical properties of the 39K D2-line.

where m is the mass of the atom, vrec is the recoil velocity obtained (lost) by the absorption (emission)
process and ~ = h/2π is the reduced Planck constant. A temperature can be associated to this velocity,
which is referred to as the recoil temperature

kBTrec =
1

2
mv2

rec (5)

Finally, we can define a saturation intensity for a transition. This intensity is defined as the intensity
where the optical Rabi-frequency equals the spontaneous decay rate. The optical Rabi-frequency depends
on the properties of the transition, here we only give the expression for a cycling transition

Is =
πhc

3λ3τ

4 Fine structure, Hyperfine structure and the Zeeman effect

The fine structure interaction originates from the coupling of the orbital angular momentum L of the
valence electron and its spin S with corresponding quantum numbers L and S respectively. The total
electronic angular momentum is given by:

Property symbol value reference

Frequency ν 389.286184353(73) THz [12]
Wavelength λ 770.108136507(144) nm
Wavenumber k/2π 12985.1893857(24) cm−1

Lifetime τ 26.37(5) ns [13]
Natural linewidth Γ/2π 6.035(11) MHz

Recoil velocity vrec 1.296541083(7) cm/s
Recoil Temperature Trec 0.40399576 µK

Doppler Temperature TD 145 µK

Table 5: Optical properties of the 40K D1-line.
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4 FINE STRUCTURE, HYPERFINE STRUCTURE AND THE ZEEMAN EFFECT

Property symbol value reference

Frequency ν 391.016296050(88) THz [12]
Wavelength λ 766.700674872(173) nm
Wavenumber k/2π 13042.8997000(29) cm−1

Lifetime τ 26.37(5) ns [13]
Natural linewidth Γ/2π 6.035(11) MHz

Recoil velocity vrec 1.302303324(7) cm/s
Recoil Temperature Trec 0.40399576 µK

Doppler Temperature TD 145 µK
Saturation intensity Is 1.75 mW/cm2

Table 6: Optical properties of the 40K D2-line.

Property symbol value reference

Frequency ν 389.286294205(62) THz [12]
Wavelength λ 770.107919192(123) nm
Wavenumber k/2π 12985.1930500(21) cm−1

Lifetime τ 26.37(5) ns [13]
Natural linewidth Γ/2π 6.035(11) MHz

Recoil velocity vrec 1.264957788(6) cm/s
Recoil Temperature Trec 0.41408279 µK

Doppler Temperature TD 145 µK

Table 7: Optical properties of the 41K D1-line.

Property symbol value reference

Frequency ν 391.01640621(12) THz [12]
Wavelength λ 766.70045870(2) nm
Wavenumber k/2π 13042.903375(1) cm−1

Lifetime τ 26.37(5) ns [13]
Natural linewidth Γ/2π 6.035(11) MHz

Recoil velocity vrec 1.2070579662(7) cm/s
Recoil Temperature Trec 0.41408279 µK

Doppler Temperature TD 145 µK
Saturation intensity Is 1.75 mW/cm2

Table 8: Optical properties of the 41K D2-line.
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4 FINE STRUCTURE, HYPERFINE STRUCTURE AND THE ZEEMAN EFFECT
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Figure 2: Optical transitions of the D1 and D2-lines of 39K, 40K and 41K. A similar plot including 37K,
38K can be found in [9]. Numerical values are taken from [12] and [14]. Note the inverted hyperfine
structure for 40K.
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4 FINE STRUCTURE, HYPERFINE STRUCTURE AND THE ZEEMAN EFFECT

J = L + S

and the quantum number J associated with the operator J is in the range of |L − S| ≤ J ≤ L + S. The
electronic ground state of 40K is the 42S1/2 level, with L = 0 and S = 1/2, therefore J = 1/2. For the
first excited state L = 1 and S = 1/2 therefore J = 1/2 or J = 3/2 corresponding to the states 42P1/2

and 42P3/2 respectively. The fine structure interaction lifts the degeneracy of the 42P1/2 and 42P3/2

levels, splitting the spectral lines in the D1 line (42S1/2 → 42P1/2) and the D2 line (42S1/2 → 42P3/2).
The hyperfine interaction originates from the coupling of the nuclear spin I with the total electronic

angular momentum

F = J + I

where the quantum number F associated with the operator F is in the range of |J − I| ≤ F ≤ J + I,
where I is the quantum number corresponding to the operator I. For 40K the fine-structure splitting is
∆EFS ≃ h × 1.7 THz, therefore the two excited states can be considered separately when considering
smaller perturbations like the hyperfine or Zeeman interaction which are on the order of a few GHz or
less.

The Hamiltonian describing the hyperfine structure for the two excited states described above is given
by [14, 15]

H
hf =

ahf

~2
I · J+

bhf

~2

3(I · J)
2

+ 3

2
(I · J) − I

2
J

2

2I(2I − 1)J(2J − 1)
,

where ahf and bhf are the magnetic dipole and electric quadrupole constants respectively. The dot
product is given by

I · J =
1

2
(F2 − I

2 − J
2)

This hyperfine interaction lifts the spin degeneracy due to the different values of the total angular mo-
mentum F . The energy shift of the manifolds are given by

δEhf =
ahf

2
[F (F + 1) − I(I + 1) − J(J + 1)]

For a S = 1/2 system in the electronic grounstate, J = 1/2, the energy splitting due to the hyperfine
interaction in zero field is given by

∆Ehf =
ahf

2

(

I +
1

2

)

In the presence of an external magnetic field the Zeeman interaction has to be taken into account

H
Z = (µB/~)(gJJ + gII) · B,

where gJ is the Landé g-factor of the electron and gI the nuclear gyromagnetic factor. Note that different
sign conventions for gI are used in literature, here we take the convention consistent with the common
references in this context [14, 4, 3], such that µ = −gIµBI. The factor gJ can be written as

gJ = gL
J(J + 1) − S(S + 1) + L(L + 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
,

where gS is the electron g-factor, gL is the gyromagnetic factor of the orbital, given by gL = 1−me/mn,
where me is the electron mass and mn is the nuclear mass. The total hyperfine interaction in the presence
of an external magnetic field is now given by the internal hamiltonian

H
int = H

hf + H
Z (6)

In the absence of orbital angular momentum, L = 0, and for S = 1/2, the eigenvalues of Eq. 6
correspond to the Breit-Rabi formula [16]
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4 FINE STRUCTURE, HYPERFINE STRUCTURE AND THE ZEEMAN EFFECT
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Figure 3: The hyperfine structure of the 2S1/2 groundstate of 40K. The states are labeled with their
low-field quantum numbers |F,mF 〉. Note the inverted hyperfine structure.
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Figure 4: Hyperfine structure of the 2P1/2 (D1) and the 2P3/2 (D2) levels of 40K.

Ehf (B) = −
ahf

4
+ gIµBmfB ±

ahf (I + 1/2)

2

(

1 +
4mfx

2I + 1
+ x2

)1/2

(7)

x =
(gS − gI)µB

ahf (I + 1/2)
B

where µB = 9.27400915 × 10−24 JT−1 is the Bohr-magneton and the sign corresponds to the manifolds
with F = I ± S.

Figures 3 and 4 show the eigenvalues of Eq. 6 for the 2S1/2 ground state and the 2P1/2 and
2P3/2 excited states of 40K respectively.

4.1 Transition strengths

In this section we present the transition strengths for 40K. We do not elaborate on the physics behind
the transition dipole matrix elements. For a more thorough description and the transition strengths for
39K and 41K we refer to Ref. [18]. The transition matrix element coupling a ground state defined by the
quantum numbers J, F,mF to an excited state with quantum numbers J ′, F ′,m′

F is given by
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5 SCATTERING PROPERTIES

Constant symbol 39K h × MHz 40K h × MHz 41K h × MHz Ref.

4p2S1/2 magnetic dipole ahf 230.8598601(3) −285.7308(24) 127.0069352(6) [14]
4p2P1/2 magnetic dipole ahf 27.775(42) −34.523(25) 15.245(42) [12]
4p2P3/2 magnetic dipole ahf 6.093(25) −7.585(10) 3.363(25) [12]

4p2P3/2 electric quadrupole bhf 2.786(71) −3.445(90) 3.351(71) [12]

Table 9: Hyperfine structure coefficients for the ground state and the first exited state.

Property Isotope symbol value reference

Electron spin g-factor gS 2.0023193043622(15) [17]
Total nuclear g-factor 39K gI −0.00014193489(12) [14]
Total nuclear g-factor 40K gI +0.000176490(34) [14]
Total nuclear g-factor 41K gI −0.00007790600(8) [14]

Total electronic g-factor gJ(4p2S1/2) 2.00229421(24) [14]
Total electronic g-factor gJ(4p2P1/2) 2/3
Total electronic g-factor gJ(4p2P3/2) 4/3

Table 10: Electronic and nuclear gyromagnetic factors. Experimental values for the gJ values are not
available, therefore, we use the Russel-Saunders values which agree within the error margins for all other
alkali atoms [14].

µeg = e〈J ′F ′m′

F |ε̂ · r|JFmF 〉

where e is the electronic charge, ε̂ is the polarization unit vector of the optical electric field and r is the
position operator. The transition strength is proportional to the square of the matrix element D ∼ |µeg|

2

and is given by

D ∼

[

√

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

{

L′ J ′ S
J L 1

} {

J ′ F ′ I
F J 1

}(

F 1 F ′

mF q −m′
F

)]2

where the curly brackets denote the Wigner-6j symbol, the normal bracket the Wigner 3j-symbol and
q = ±1 for σ± polarized transitions and q = 0 for π transitions.

The relative strengths for the transitions D between different F,mF values for 40K are shown in Fig.
5 and 6 for σ+ and π polarizations respectively. Transition strengths for σ− can be obtained from Fig.
5 by replacing all mF values with −mF . The strengths are normalized to yield an integer value. Note
that the normalizations are different for figures 5 and 6. Similar figures for 39K and 41K can be found in
Ref. [18].

5 Scattering properties

The scattering properties of ultracold atoms are essential for the evaporative cooling processes and most
experiments performed with ultracold gases. At typical densities temperatures the scattering reduces to
s-wave scattering For ultracold scattering only lower partial waves play a role and the scattering properties
are determined by the positions of only the last few bound states of the potentials. The scattering can
be described by the radial Schrödinger equation

[

−
~

2

2µ

(

∂2

∂r2
+

2

r

∂

∂r
−

l(l + 1)

r2

)

+ V (r)

]

R(r) = ǫR(r), (8)

where R(r) is the radial wavefunction, l is the angular momentum quantum number and V (r) is the
scattering potential. Many ultracold scattering properties can be obtained with sufficient accuracy for
general use in the lab by only using the accumulated phase method [19] and V (r) = −C6/r6. However,
for Potassium accurate potentials have been published by Falke, et al. [20]. Because potassium has
S = 1/2 the total spin of the potassium dimer can be either singlet (S = 0) or triplet (S = 1). Figure
7 shows the Born-Oppenheimer potentials for the singlet X1Σ and triplet a3Σ potentials. Solving Eq. 8
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5 SCATTERING PROPERTIES
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Figure 5: Transition probabilities for 40K (I = 4) on σ+ transitions, normalized to integer values.
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Figure 6: Transition probabilities for 40K (I = 4) on π transitions, normalized to integer values.
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5 SCATTERING PROPERTIES

isotope as at

39/39 138.49(12) −33.48(18)
39/40 −2.84(10) −1985(69)
39/41 113.07(12) 177.10(27)
40/40 104.41(9) 169.67(24)
40/41 −54.28(21) 97.39(9)
41/41 85.53(6) 60.54(6)

Table 11: s-wave scattering lengths for the various isotope-combinations of potassium, values are taken
from Ref. [20]

value units

C6 3925.9 Eha6
0

C8 4.224 × 105 Eha8
0

C10 4.938 × 107 Eha10
0

r0 (39K) 64.61 a0

r0 (40K) 65.02 a0

r0 (41K) 65.42 a0

Table 12: Van der Waals properties of the scattering potential of potassium. Vvdw(r) = −C6/r6−C8/r8−
C8/r8.

for ǫ ↓ 0 one can obtain the scattering length. Table 11 lists the s-wave scattering lengths of the various
potassium isotopes [20].

To qualitatively describe the scattering for 40K we compare the scattering lengths to the the van der
Waals range. The van der Waals range is a measure for the typical range of the potential for an atomic
species. It is defined as the range where the kinetic energy of confinement in the potential equals the
potential energy and is given by [21]

r0 =
1

2

(

2µC6

~2

)1/4

Using the van der Waals coefficient of C6 = 3925.9 Eha6
0 [20] for 40K we obtain a van der Waals range

of r0 ≃ 65 a0. The scattering lengths of both the singlet and triplet potentials are much larger than
r0 indicating resonant scattering due to the presence of a weakly bound state in both the singlet and
triplet scattering potentials. Figure 8 shows the wavefunctions of the least bound states in the singlet
and triplet potentials for 40K. Note the horizontal logarithmic scale. The wavefunctions extend far into
the asymptotic van der Waals tail of the potentials.

5.1 Feshbach resonances

The use of Feshbach resonances are essential for the study of ultracold gases, in particular for fermionic
isotopes. A Feshbach resonance occurs due to a resonant coupling of a scattering pair of atoms with
an energetically closed molecular state. The s-wave scattering length a in the vicinity of a Feshbach
resonance is parameterized by

a(B) = abg

(

1 −
∆B

B − B0

)

where abg is the background scattering length in absence of coupling to the molecular state, B0 is the
resonance position and ∆B is the magnetic field width of the resonance. Due to the resonant scattering
in the open channels (i.e. a large background scattering length) the Feshbach resonances of 40K have
a broad character. For 39K eight resonances have been experimentally obtained and are listed together
with some theoretical predictions in table 13. For 40K two experimentally characterized s-wave Feshbach
resonances and one p-wave resonance have been published. The resonances are summarized in Table 14.
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5 SCATTERING PROPERTIES

X
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S

Figure 7: Born-Oppenheimer potentials VS(r) for the singlet S = 0, X1Σ and the triplet S = 1, a3Σ
states.

S=0 S=1

Figure 8: Wavefunctions of the least bound states of 40K for the singlet (left) and triplet (right) po-
tentials. The dashed curve indicates the potential and the solid curve the radial wavefunction of the
least-bound vibrational levels. Note the horizontal logarithmic scale and the asymptotic character of the
wavefunctions.

mf1
, mf2 B0 (G) −∆B (G) abg (a0)

1 + 1 25.85 ± 0.1 0.47 −33
403.4 ± 0.7 52 −29

(745.1) 0.4 −35
752.3 ± 0.1 0.4 −35

0 + 0 59.3 ± 0.6 9.6 −18
66.0 ± 0.9 7.9 −18

(471) 72 −28
(490) 5 −28
(825) 0.032 −36
(832) 0.52 −36

-1 + -1 32.6 ± 1.5 −55 −19
162.8 ± 0.9 37 −19
562.2 ± 1.5 56 −29

Table 13: All published Feshbach resonances for 39K. Numbers in brackets are only theoretically predicted.
All values have been taken from Ref. [22]
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mf1
, mf2 s/p B0 (G) ∆B (G) Ref.

-9/2 + -7/2 s 202.10 ± 0.07 7.8 ± 0.6 [23, 24, 25]
-9/2 + -5/2 s 224.21 ± 0.05 9.7 ± 0.6 [23, 26]
-7/2 + -7/2 p ∼ 198.8 [23, 24, 27]

Table 14: All resonances are between spin states in the F = 9/2 manifold. This table has been adapted
from Ref. [23]
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